Abstract

Laboratory and numerical experiments and boundary layer analysis of the entrainment of buoyant asthenosphere by subducting oceanic lithosphere (cf. Morgan et al., Terra Nova, 2007) implies that slab entrainment is likely to be relatively inefficient at removing a buoyant and lower viscosity asthenosphere layer. Such asthenosphere would instead be mostly removed by accretion into overlying oceanic lithosphere, both at mid-ocean ridges where a ~60-km compositional lithosphere forms due to the melt-induced dehydration of upwelling peridotitic mantle, and later with the thermal growth of  overlying oceanic lithosphere. When an oceanic plate subducts, the lower (hot) side of a subducting slab entrains a 10– 30 km-thick downdragged layer, whose thickness depends upon the subduction rate and the density contrast and viscosity of the asthenosphere, while the upper (cold) side of the slab may entrain as much by thermal ‘freezing’ onto the slab as by mechanical downdragging.   Here we use 2-D numerical experiments to investigate the dynamics of entrainment and counterflow at subduction zones. We explore situations with both stable subduction geometries and slab rollback. Due to its low viscosity, a plume-fed asthenosphere is particularly likely to be stratified in its internal density, with variable amounts of plume melt-extraction leading to variable pyroxenite fractions and associated vertical density stratification within a bilithologic ~80-90% peridotite, ~10-20% pyroxenite asthenosphere. While this type of vertical density stratification appears to lead to similar predicted entrainment by subducting slabs, it will generate more complex patterns of asthenospheric counterflow that involve shallower and time-dependent counterflow behind the subducting slab.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call