Abstract
We describe a methodology for making counterfactual predictions in settings where the information held by strategic agents and the distribution of payoi¬€-relevant states of the world are unknown. The analyst observes behavior assumed to be rationalized by a Bayesian model, in which agents maximize expected utility, given partial and dii¬€erential information about the state. A counterfactual prediction is desired about behavior in another strategic setting, under the hypothesis that the distribution of the state and agents’ information about the state are held fixed. When the data and the desired counterfactual prediction pertain to environments with finitely many states, players, and actions, the counterfactual prediction is described by finitely many linear inequalities, even though the latent parameter, the information structure, is infinite dimensional.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.