Abstract
Despite having achieved notable success for aspect-based sentiment analysis (ABSA), deep neural networks are susceptible to spurious correlations between input features and output labels, leading to poor robustness. In this paper, we propose a novel Counterfactual-Enhanced Information Bottleneck framework (called CEIB) to reduce spurious correlations for ABSA. CEIB extends the information bottleneck (IB) principle to a factual-counterfactual balancing setting by integrating augmented counterfactual data, with the goal of learning a robust ABSA model. Concretely, we first devise a multi-pattern prompting method, which utilizes the large language model (LLM) to generate high-quality counterfactual samples from the original samples. Then, we employ the information bottleneck principle and separate the mutual information into factual and counterfactual parts. In this way, we can learn effective and robust representations for the ABSA task by balancing the predictive information of these two parts. Extensive experiments on five benchmark ABSA datasets show that our CEIB approach achieves superior prediction performance and robustness over the state-of-the-art baselines. Code and data to reproduce the results in this paper is available at: https://github.com/shesshan/CEIB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.