Abstract

With the proliferation of Location-based Social Networks (LBSNs), user check-in data at Points-of-Interest (POIs) has surged, offering rich insights into user preferences. However, sequential POI recommendation systems always face two pivotal challenges. A challenge lies in the difficulty of modeling time in a discrete space, which fails to accurately capture the dynamic nature of user preferences. Another challenge is the inherent sparsity and noise in continuous POI recommendation, which hinder the recommendation process. To address these challenges, we propose counterfactual user sequence synthesis with continuous time dynamic preference modeling (CussCtpm). CussCtpm innovatively combines Gated Recurrent Unit (GRU) with neural Ordinary Differential Equations (ODEs) to model user preferences in a continuous time framework. CussCtpm captures user preferences at both the POI-level and interest-level, identifying deterministic and non-deterministic preference concepts. Particularly at the interest-level, we employ GRU and neural ODEs to model users' dynamic preferences in continuous space, aiming to capture finer-grained shifts in user preferences over time. Furthermore, CussCtpm utilizes counterfactual data augmentation to generate counterfactual positive and negative user sequences. Our extensive experiments on two widely-used public datasets demonstrate that CussCtpm outperforms several advanced baseline models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.