Abstract

Natural climate solutions provide opportunities to reduce greenhouse gas emissions and the United States is among a growing number of countries promoting storage of carbon in agricultural soils as part of the climate solution. Historical patterns of soil organic carbon (SOC) stock changes provide context about mitigation potential. Therefore, our objective was to quantify the influence of climate-smart soil practices on SOC stock changes in the top 30 cm of mineral soils for croplands in the United States using the DayCent Ecosystem Model. We estimated that SOC stocks increased annually in US croplands from 1995 to 2015, with the largest increase in 1996 of 16.6 Mt C (95% confidence interval ranging from 6.1 to 28.2 Mt CO2 eq.) and the lowest increase in 2015 of 10.6 Mt C (95% confidence interval ranging from − 1.8 to 22.2 Mt C). Most climate-smart soil practices contributed to increases in SOC stocks except for winter cover crops, which had a negligible impact due to a relatively small area with cover crop adoption. Our study suggests that there is potential for enhancing C sinks in cropland soils of the United States although some of the potential has been realized due to past adoption of climate-smart soil practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call