Abstract
Counterfactual explanations are gaining in popularity as a way of explaining machine learning models. Counterfactual examples are generally created to help interpret the decision of a model. In this case, if a model makes a certain decision for an instance, the counterfactual examples of that instance reverse the decision of the model. The counterfactual examples can be created by craftily changing particular feature values of the instance. Though counterfactual examples are generated to explain the decision of machine learning models, in this work, we explore another potential application area of counterfactual examples, whether counterfactual examples are useful for data augmentation. We demonstrate the efficacy of this approach on the widely used “Adult-Income” dataset. We consider several scenarios where we do not have enough data and use counterfactual examples to augment the dataset. We compare our approach with Generative Adversarial Networks approach for dataset augmentation. The experimental results show that our proposed approach can be an effective way to augment a dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.