Abstract

We show how to construct bounds on counterfactual choice probabilities in semiparametric discrete-choice models. Our procedure is based on cyclic monotonicity, a convex-analytic property of the random utility discrete-choice model. These bounds are useful for typical counterfactual exercises in aggregate discrete-choice demand models. In our semiparametric approach, we do not specify the parametric distribution for the utility shocks, thus accommodating a wide variety of substitution patterns among alternatives. Computation of the counterfactual bounds is a tractable linear programming problem. We illustrate our approach in a series of Monte Carlo simulations and an empirical application using scanner data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.