Abstract
Recently, there has been growing interest in developing statistical tools to conduct counterfactual analysis with aggregate data when a single “treated” unit suffers an intervention, such as a policy change, and there is no obvious control group. Usually, the proposed methods are based on the construction of an artificial counterfactual from a pool of “untre ated” peers, organized in a panel data structure. In this article, we consider a general framework for counterfactual analysis for high-dimensional, nonstationary data with either deterministic and/or stochastic trends, which nests well-established methods, such as the synthetic control. We propose a resampling procedure to test intervention effects that does not rely on postintervention asymptotics and that can be used even if there is only a single observation after the intervention. A simulation study is provided as well as an empirical application. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.