Abstract
Soil – geofoam interfaces have been studied through an extensive experimental program by performing multiple series of interface shear tests using two different granular soils (i.e. beach sand and construction material sand) and one cohesive soil (i.e. bentonite clay) as well as a soil mixture containing 75% sand and 25% clay by dry weight at distinct loading conditions (i.e. normal stresses (σ): 25, 100, 250; low, moderate, high loading conditions, respectively). Using the shear stress versus horizontal displacement curves obtained, some important engineering design parameters including peak shear stress, residual shear stress, interface sensitivity (i.e., peak/residual ratio) and displacement required to reach peak stress have been determined and the variations in those interface mechanical properties as a function of loading condition and counterface soil type have been investigated. It was shown that the peak as well as residual shear stresses increased with an increase in normal stress for all the interface systems tested. Further, the granular soil (sand) interfaces demonstrated relatively larger frictional strengths (both peak and residual) as compared to both the cohesive soil (clay) interface and the sand/clay admixture soil interface. Additionally, the higher the angularity of granular soil particles became, the larger the interface shear strengths (peak and residual), when sheared against geofoams, developed in light of experimental results attained as a result of interface shear tests on different material combinations. For comparison, the detected peak strength at average for the construction material sand, the beach sand, and the sand/clay admixture soil interfaces as compared to the bentonite clay interface were improved 59.8%, 43.4%, and 20.3%, respectively. Additionally, the detected residual strength at average for the construction material sand, the beach sand, and the sand/clay admixture soil interfaces as compared to the bentonite clay interface were improved 53.9%, 28.6%, and 15.4%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.