Abstract
We prove that for any $c \geq 5$, there exists an infinite family $(G_n )_{n\in \mathbb{N}}$ of graphs such that $\chi(G_n) > c$ for all $n\in \mathbb{N}$ and $\chi(G_m \times G_n) \leq c$ for all $m \neq n$. These counterexamples to Hedetniemi's conjecture show that the Boolean lattice of exponential graphs with $K_c$ as a base is infinite for $c \geq 5$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Commentationes Mathematicae Universitatis Carolinae
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.