Abstract
This paper presents a counterexample-guided iterative algorithm to compute convex, piecewise linear (polyhedral) Lyapunov functions for continuous-time piecewise linear systems. Polyhedral Lyapunov functions provide an alternative to commonly used polynomial Lyapunov functions. Our approach first characterizes intrinsic properties of a polyhedral Lyapunov function including its “eccentricity” and “robustness” to perturbations. We then derive an algorithm that either computes a polyhedral Lyapunov function proving that the system is asymptotically stable, or concludes that no polyhedral Lyapunov function exists whose eccentricity and robustness parameters satisfy some user-provided limits. Significantly, our approach places no a-priori bound on the number of linear pieces that make up the desired polyhedral Lyapunov function. The algorithm alternates between a learning step and a verification step, always maintaining a finite set of witness states. The learning step solves a linear program to compute a candidate Lyapunov function compatible with a finite set of witness states. In the verification step, our approach verifies whether the candidate Lyapunov function is a valid Lyapunov function for the system. If verification fails, we obtain a new witness. We prove a theoretical bound on the maximum number of iterations needed by our algorithm. We demonstrate the applicability of the algorithm on numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.