Abstract

This study evaluated the relative importance of perfusion and diffusion mechanisms in compartmental models of blood : tissue helium exchange in a predominantly skeletal muscle tissue bed in the sheep hind limb. Helium has different physiochemical properties from previously studied gases and is a common diluent gas in underwater diving where decompression schedules are based on theoretical models of inert gas kinetics. Helium kinetics across skeletal muscle were determined during and after 20 min of helium inhalation, at separate resting and low steady-states of femoral vein blood flow in six sheep under isoflurane anaesthesia. Helium concentrations in arterial and femoral vein blood were determined using gas chromatographic analysis and femoral vein blood flow was monitored continuously. Parameters and model selection criteria of various perfusion-limited or perfusion-diffusion compartmental models of skeletal muscle were estimated by simultaneous fitting of the models to the femoral vein helium concentrations for both blood flow states. A model comprising two parallel perfusion-limited compartment models fitted the data well but required a 51-fold difference in relative compartment perfusion that did not seem physiologically plausible. Models that allowed a countercurrent diffusion exchange of helium between arterial and venous vessels outside of the tissue compartments provided better overall fit of the data and credible parameter estimates. These results suggest a role of arterial-venous diffusion in blood : tissue helium equilibration in skeletal muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.