Abstract

The affinity of small molecules for biomolecular cavities is tuned through a combination of primary and secondary interactions. It has been challenging to mimic these features in organic synthetic host molecules, however, where the cavities tend to be highly symmetric and nonpolar, and less amenable to chemical manipulation. Here, a host molecule composed of a TREN ligand and cyclotriveratrylene moiety was investigated. Size-matched polar guests were encapsulated within the cavity via triple protonation of the TREN moiety with various sulfonic acids. X-ray crystallography confirmed guest encapsulation and identified three methanesulfonates, p-toluenesulfonates, or 2-naphthalenesulfonates hydrogen-bonded with H3TREN at the periphery of the cavity. These structurally diverse counteranions were shown by 1H NMR spectroscopy to differentially regulate guest access at the three portals, and to undergo competitive displacement in solution. This work reveals "counteranion tuning" to be a simple and powerful strategy for modulating host-guest affinity, as applied here in a TREN-hemicryptophane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.