Abstract

In this study, an observer based control strategy is proposed for load frequency control (LFC) scheme against cyber-attack uncertainties. Most of research work focused on detection scheme or delay estimation scheme in presence of cyber-attack vulnerabilities and paid less attention on design of counteractive robust control scheme for LFC problem. Thus, observer based control scheme is designed here and provides robust performance against unknown input attack uncertainty and communication time-delay attack uncertainty. The generalized extended state observer (GESO) is used not only for state and disturbance estimation but also for disturbance rejection of the system. The said observer ensures accurate estimation of the actual states leading to convergence of estimation error to zero. So, the observer based linear quadratic regulator (LQR) is used to regulate the closed-loop damping ratio against cyber-attack uncertainty. In addition to fast response in terms of settling time and reduced over/undershoots, the proposed control scheme satisfactorily compensates the cyber-attack uncertainties in power system cyber physical networks and also compared with existing traditional PI and PID controllers. The simulation results demonstrate the robustness in terms of stability and effectiveness in terms of system security with proposed controller when subjected to cyber-attack uncertainties and load disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.