Abstract
Abnormalities of body-weight transfer occur during several motor tasks in people with Parkinson's disease (PwPD). In this study, a novel robotic paradigm for assessment and training of dynamic balance was developed and applied to twelve healthy subjects (HS) and ten PwPD to verify its feasibility and to assess the capability of PwPD to counteract postural perturbations through body-weight shifts. At variance with other robotic paradigms, subjects had to react as fast as possible to the perturbation, bringing the platform back to the horizontal and keeping it until the end of the task. Four randomized perturbations, obtained varying the platform equilibrium angle from 0° to ±6° in sagittal (backward, forward) and frontal (right, left) planes, were repeated 3 times. Compared to HS, PwPD showed, in all perturbation directions, increased delay in counteraction phase onset (p<=0.01), prolonged time to stabilize the platform (p<=0.02), and higher deviation of the final plate inclination from the horizontal (p<=0.04), the deviation being larger during sagittal perturbations. PwPD showed also larger (p=0.01) postural sway around the stabilization angle following frontal perturbations. Results are in keeping with known hypo- and bradykinesia as well as proprioceptive and kinesthetic impairments in PD. We suggest that the proposed approach is feasible and might be included in balance evaluation and training in PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.