Abstract

Parkinson’s Disease (PD) related genes PINK1, a protein kinase [1], and Parkin, an E3 ubiquitin ligase [2], operate within the same pathway [3-5], which controls, via specific elimination of dysfunctional mitochondria, the quality of the organelle network [6]. Parkin translocates to impaired mitochondria and drives their elimination via autophagy, a process known as mitophagy [6]. PINK1 regulates Parkin translocation through a not yet completely understood mechanism [7, 8]. Mitochondrial outer membrane proteins Mitofusin (MFN), VDAC, Fis1 and TOM20 were found to be targets for Parkin mediated ubiquitination [9-11]. By adding ubiquitin molecules to its targets expressed on mitochondria, Parkin tags and selects dysfunctional mitochondria for clearance, contributing to maintain a functional and healthy mitochondrial network. Abnormal accumulation of misfolded proteins and unfunctional mitochondria is a characteristic hallmark of PD pathology. Therefore a therapeutic approach to enhance clearance of misfolded proteins and potentiate the ubiquitin-proteosome system (UPS) could be instrumental to ameliorate the progression of the disease. Recently, much effort has been put to identify specific de-ubiquitinating enzymes (DUBs) that oppose Parkin in the ubiquitination of its targets. Similar to other post-translational modifications, such as phosphorylation and acetylation, ubiquitination is also a reversible modification, mediated by a large family of DUBs [12]. DUBs inhibitors or activators can affect cellular response to stimuli that induce mitophagy via ubiquitination of mitochondrial outer membrane proteins MFN, VDAC, Fis1 and TOM20. In this respect, the identification of a Parkin-opposing DUB in the regulation of mitophagy, might be instrumental to develop specific isopeptidase inhibitors or activators that can modulate the fundamental biological process of mitochondria clearance and impact on cell survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.