Abstract

(R)-2-chloromandelic acid represents a key pharmaceutical intermediate. Its production on large scale was hampered by low turnover rates and moderate enantiomeric excess (ee) using enzyme as well as metal catalysts. The cloning and heterologous overexpression of an (R)-hydroxynitrile lyase from Prunus amygdalus opened a way to large-scale production of this compound. Especially the rationally designed mutation of alanine to glycine at amino acid position 111 of the mature protein tremendously raised the yield for enantioselective conversion of 2-chlorobenzaldehyde to (R)-2-chloromandelonitrile, which can be hydrolysed to the corresponding alpha hydroxy acid. However, expression of this mutein was less efficient than for the unmodified enzyme. Subsequent LC/MS/MS-analysis of the protein sequence revealed that mutation A111G triggered the posttranslational deamidation of the neighbouring residue asparagine (N110) to aspartic acid. This finding on the one hand could explain the decreased secretion efficiency of the mutant as compared to the wildtype enzyme, but on the other hand raised the question which of the two residues was truly accountable for the enhanced conversion. The muteins N110D, A111G and N110DA111G were constructed and compared in terms of protein productivity and performance in chemical syntheses. The expression level of the double mutein was augmented significantly and the enantioselectivity remained high. Reduced protein expression of mutein PaHNL5-L1Q-A111G was remedied by mutational anticipation of posttranslational deamidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.