Abstract

In recent years finite tensor products of reproducing kernel Hilbert spaces (RKHSs) of Gaussian kernels on the one hand and of Hermite spaces on the other hand have been considered in tractability analysis of multivariate problems. In the present paper we study countably infinite tensor products for both types of spaces. We show that the incomplete tensor product in the sense of von Neumann may be identified with an RKHS whose domain is a proper subset of the sequence space RN. Moreover, we show that each tensor product of spaces of Gaussian kernels having square-summable shape parameters is isometrically isomorphic to a tensor product of Hermite spaces; the corresponding isomorphism is given explicitly, respects point evaluations, and is also an L2-isometry. This result directly transfers to the case of finite tensor products. Furthermore, we provide regularity results for Hermite spaces of functions of a single variable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.