Abstract
Two linear orderings of a same set are perpendicular if the only self-mappings of this set that preserve them both are the identity and the constant mappings. Two linear orderings are orthogonal if they are isomorphic to two perpendicular linear orderings. We show that two countable linear orderings are orthogonal as soon as each one has two disjoint infinite intervals. From this and previously known results it follows in particular that each countably infinite linear ordering is orthogonal to itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.