Abstract

Global ischemia arising during cardiac arrest or cardiac surgery causes highly selective, delayed death of hippocampal CA1 neurons. Phytoestrogens are naturally occurring plant-derived compounds that are present in the human diet and are considered selective estrogen receptor (ER) modulators. The phytoestrogen coumestrol is a potent isoflavonoid, with binding affinities for both ER-α and ER-β that are comparable to those of 17b-estradiol. The present study examined the hypothesis that coumestrol protects hippocampal neurons in ovariectomized rats in a model of cerebral global ischemia. Ovariectomized rats were subjected to global ischemia (10min) or sham surgery and received a single intracerebroventricular or peripheral infusion of 20μg of coumestrol, 20μg of estradiol or vehicle 1h before ischemia or 0h, 3h, 6h or 24h after reperfusion. Estradiol and coumestrol afforded significant neuroprotection in all times of administration, with the exception of estradiol given 24h after the ischemic insult. Animals received icv infusion of the broad-spectrum ER antagonist ICI 182,780 (50μg) or vehicle into the lateral ventricle just before the E2 or coumestrol administration. The ER antagonist abolished estradiol protection, consistent with a role of classical ERs. In contrast, ICI 182,780 effected only partial reversal of the neuroprotective actions of coumestrol, suggesting that other cellular mediators in addition to classical ERs may be important. Additional research is needed to determine the molecular targets mediating the neuroprotective action of coumestrol and the therapeutic potential of this phytoestrogen in the mature nervous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call