Abstract
In this work, we described the design, synthesis and characterization of a new class of NPSR antagonists bearing the tetracyclic coumarinyl pyranopyrimidine scaffold incorporated with different acyclic and/or heterocyclic moieties. These compounds are highlighted in this study as never being used as NPSR antagonists before which provides a model for the discovery of new bioactive inhibitors that may hold potential for drug development towards anxiety, food, and addiction disorders. Synthetic and medicinal chemistry studies led to the identification of four potent antagonists, compounds 7d, 10, 12 and 13, which were able to significantly inhibit the stimulatory effect of NPS through counteracting the increased intracellular Ca2+ accumulation. The target compound 7d was the most active derivative behaving as a pure NPSR antagonist and displaying IC50 value of 2 μM. Homology model of NPSR was built based on bovine rhodopsin structure. Modeling studies were carried out to further rationalize the NPSR binding mode of the target compounds. Moreover, molecular dynamics simulation study was performed for compounds 7d, 10 and 12 which revealed the stability of the ligand-protein complex and the reliability of the docking studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.