Abstract
Coumarin-based “turn-off” fluorescent chemosensor, 3-acetoacetyl-7-diethylaminocoumarin (1), has been synthesized and structurally characterized by IR, 1H NMR and X-ray crystal structure analysis. The fluorescence behaviors in the presence of various metal ions were investigated in aqueous media. 1 Exhibits highly selective and sensitive absorbance and fluorescence sensing ability for Cu2+ over other metal ions. Addition of Cu2+ to the aqueous solution of 1 gave rise to obvious absorbance change and fluorescence quenching. Other competing ions, such as Mg2+, Ba2+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, Pb2+, Cd2+, Hg2+, induced negligible absorbance and fluorescence changes under the same conditions. The job’s plot showed that the stoichiometry between 1 and Cu2+ was estimated to be 1:1. The fluorescence intensity varied almost linearly vs. the concentration of Cu2+ (1.0–7.0μM), and the detection limit of Cu2+ was estimated to be 1.81nM, indicating that 1 can be used as “turn-off” fluorescent chemosensor to selectively detect Cu2+ in aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.