Abstract

In the present work, the adsorption mechanism and corrosion inhibition effect of coumarin as a green inhibitor was characterized. Quantum chemical calculation and molecular dynamics simulation of the coumarin molecule were performed to get insight into the adsorption model by assessing the frontier orbital parameters and adsorption configuration. The theoretical calculation disclosed that coumarin exhibited a higher adsorption reactivity in the water phase than that in the gas phase, and the C Created by potrace 1.16, written by Peter Selinger 2001-2019 ]]> O structure in coumarin was the most favorable site for adsorption occurring. Coumarin could adsorb spontaneously on an aluminum surface in a parallel manner, where electron donation occurred from the aluminum surface to the inhibitor. Additionally, the experimental investigation determined that coumarin decreased the aluminum dissolution by suppressing both the anodic and cathodic reactions. The optimal coumarin concentration of 0.5 wt% resulted in a maximum inhibition efficiency (89.6%), but coumarin at a higher concentration would lead to the competitive and unstable adsorption of inhibitor molecules, thus decreasing the inhibition effect. Moreover, surface chemical characterization confirmed the formation of Al–coumarin complexes, which was in accordance with the theoretical calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call