Abstract

Vibronic coupling and hydration were taken into account when describing the absorption of coumarin C343 (both neutral and anionic forms) in an aqueous media. It was shown that the B3LYP functional with the 6-31 + + G(d,p) basis set and the IEFPCM solvent continuum model give theoretical vibronic absorption spectra, which are coincide with the experimental ones. Of the structural differences between C3430 and C343-, there is a different twisting of the carboxyl group additionally changing due to excitation. Upon excitation, a significant shift in the electron density occurs from the C10 atom to the C4 atom only. Thus, a charge transfer on the scale of the entire molecule does not occur. Different hydration complexes with strongly bound water molecules have been analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call