Abstract

Extrinsic disorder strongly affects the performance of graphene-based quantum dots. The standard SiO2 substrate is generally considered to be one major factor besides edge-induced disorder. In this report we present the fabrication of lithographically defined quantum dots on SiO2 with short and narrow constrictions and different central island sizes. Low temperature transport measurements display distinct Coulomb-blockade peaks with amplitudes exceeding what is commonly observed experimentally. The analysis of the normalized Coulomb-blockade peak spacing shows a size dependence, which has not previously been observed for devices on SiO2. Furthermore, a quantitative comparison of the peak spacing distribution to the literature shows that one of the two devices compares favorably to a similar sized dot placed on hexagonal boron nitride, which is known to reduce the substrate disorder. Our findings suggest that the other sources of extrinsic disorder, such as lithography residues, may play an important role for the performance of large graphene quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.