Abstract

Double-ended aryl dithiols [alpha,alpha'-xylyldithiol (XYL) and 4,4'-biphenyldithiol] formed self-assembled monolayers (SAMs) on gold(111) substrates and were used to tether nanometer-sized gold clusters deposited from a cluster beam. An ultrahigh-vacuum scanning tunneling microscope was used to image these nanostructures and to measure their current-voltage characteristics as a function of the separation between the probe tip and the metal cluster. At room temperature, when the tip was positioned over a cluster bonded to the XYL SAM, the current-voltage data showed "Coulomb staircase" behavior. These data are in good agreement with semiclassical predictions for correlated single-electron tunneling and permit estimation of the electrical resistance of a single XYL molecule (approximately18 ± 12 megohms).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.