Abstract

Layered two-dimensional dichalcogenides are potential candidates for post-silicon electronics. Here, we report insightfully experimental and theoretical studies on the fundamental Coulomb screening and scattering effects in these correlated systems, in response to the changes of three crucial Coulomb factors, including electric permittivity, interaction distance, and density of Coulomb impurities. We systematically collect and analyze the trends of electron mobility with respect to the above factors, realized by synergic modulations on channel thicknesses and gating modes in dual-gated MoS2 transistors with asymmetric dielectric cleanliness. Strict configurative form factors are developed to capture the subtle parametric changes across dimensional crossover. A full diagram of the carrier scattering mechanisms, in particular on the pronounced Coulomb scattering, is unfolded. Moreover, we clarify the presence of up to 40% discrepancy in mobility by considering the permittivity modification across dimensional crossover. The understanding is useful for exploiting atomically thin body transistors for advanced electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.