Abstract
We study spectral flow preserving four-point correlation functions in the AdS3-WZNW model using the Coulomb gas method on the sphere. We present a multiple integral realization of the conformal blocks and explicitly compute amplitudes involving operators with quantized values of the sum of their spins, i.e., requiring an integer number of screening charges of the first kind. The result is given as a sum over the independent configurations of screening contours yielding a monodromy invariant expansion in powers of the worldsheet moduli. We then examine the factorization limit and show that the leading terms in the sum can be identified, in the semiclassical limit, with products of spectral flow conserving three-point functions. These terms can be rewritten as the m-basis version of the integral expression obtained by J. Teschner from a postulate for the operator product expansion of normalizable states in the H3+-WZNW model. Finally, we determine the equivalence between the factorizations of a particular set of four-point functions into products of two three-point functions either preserving or violating spectral flow number conservation. Based on this analysis we argue that the expression for the amplitude as an integral over the spin of the intermediate operators holds beyond the semiclassical regime, thus corroborating that spectral flow conserving correlators in the AdS3-WZNW model are related by analytic continuation to correlation functions in the H3+-WZNW model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.