Abstract

We study the quantization and the one-loop renormalization of the model resulting from the coupling of charged fermions with a Chern–Simons field, in the Coulomb gauge. A proof of the Lorentz covariance of the physical quantities follows after establishing the Dirac–Schwinger algebra for the Poincaré densities and the transformation properties of the fields under the Poincaré group. The Coulomb gauge one-loop renormalization program is, afterwards, implemented. The noncovariant form of the one-loop fermion propagator, Chern–Simons field propagator and the vertex are explicitly obtained. Finally, the electron anomalous magnetic moment is calculated stressing that, due to the peculiarities of the Coulomb gauge, the contributions from the self-energy diagrams turn out to be essential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.