Abstract
In the present work, a computational study of the Coulomb explosions of atomic metal clusters of the type X82+ was carried out, X = (Li-Cs). The work was done within the Kohn-Sham methodology using the Born-Oppenheimer molecular dynamics approximation. The dominant fission channels were established and the electron bonding patterns were analyzed with the help of the Electron Localization Function (ELF). A simple theoretical model was developed to understand and describe, in a qualitatively way, the main physical mechanism involved in the fission of these multicharged clusters. It has been found that the most possible fragments after explosion are the same considering the dynamics or the thermodynamics results. The bonds breaking and formation are well depicted by the ELF, and the main physical effects are well described by the developed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.