Abstract

The phenomenon of Coulomb explosion is studied through qualitative numerical simulations of clusters irradiated with intense ultrashort laser pulses. We introduce a semiquantum approach which allows us to model two different types of materials---akin to rare gases and dielectrics---and which is appropriate for both low- and high-energy domains, i.e., the thermodynamic regime and the Coulomb explosion regime. Through a detailed study of clusters submitted to laser pulses of various intensities, we demonstrate that Coulomb explosion is the process responsible for cluster explosion under femtosecond laser pulses. We examine the differences in the dynamics of explosion of rare-gas clusters as a function of the wavelength of the incident laser radiation. For dielectric clusters, our simulations reveal a fragmented explosion mechanism; the influence of the size of the cluster is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.