Abstract

This work explores Coulomb explosion (CE) dissociation pathways in multiply charged cations of para-nitrotoluene (PNT), a model compound for nitroaromatic energetic molecules. Experiments using strong-field ionization and mass spectrometry indicate that metastable cations PNT2+ and PNT3+ undergo CE to produce NO2+ and NO+. The experimentally measured kinetic energy release from CE upon formation of NO2+ and NO+ agrees qualitatively with the kinetic energy release predicted by computations of the reaction pathways in PNT2+ and PNT3+ using density functional theory (DFT). Both DFT computations and mass spectrometry identified additional products from CE of highly charged PNTq+ cations with q > 3. The dynamical timescales required for direct CE of PNT2+ and PNT3+ to produce NO2+ were estimated to be 200 and 90 fs, respectively, using ultrafast disruptive probing measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.