Abstract

The attachment of flux tubes to electrons by a Chern–Simons (CS) singular gauge transformation of the wavefunction opened up the field theoretical description of the fractional quantum Hall effect (FQHE). Nevertheless, in Jain's composite fermion (CF) theory, quasiparticles are believed to be vortices carrying a fractional charge in addition to the winding phase of the CS flux tubes. The different structure of the wavefunction in these two cases directly affects the excitation energy gaps. By using a simple ansatz we were able to evaluate analytically the Coulomb excitation energies for the mean-field level CS wavefunction, thus allowing a direct comparison with corresponding numerical results obtained from Jain's CF picture. The considerable difference between the excitation energies found in these two cases demonstrates in quantitative terms the very different impact that the internal structure of the wavefunction has in these two approaches, often used interchangeably to describe the FQHE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.