Abstract

We theoretically investigate the electron momentum distributions in orthogonally polarized two-color pulses with the Coulomb-Volkov distorted-wave approximation (CVA) theory and focus on the role of the Coulomb potential in the electron momentum distributions by comparing the CVA results with the strong-field approximation (SFA) simulations. Our results show that in comparison with the SFA simulations, the electron momentum distributions in CVA are in better agreement with the experimental observations and the time-dependent Schr\odinger equation calculations. By analyzing the phase of the dipole moment, we find that the change of the electron momentum distributions in CVA can be ascribed to the different Coulomb corrections of the phases, which give rise to an enhanced contribution from the forward-rescattering electron and, on the other hand, a decrease of the contribution from the direct electron in the presence of the Coulomb potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.