Abstract

We study the transconductance for two coupled one-dimensional wires or edge states described by Luttinger liquid models. The wires are assumed to interact over a finite segment. We find for the interaction parameter $g=1/2$ that the drag rate is finite at zero temperature, which cannot occur in a Fermi-liquid system. The zero temperature drag is, however, cut off at low temperature due to the finite length of the wires. We also consider edge states in the fractional quantum Hall regime, and we suggest that the low temperature enhancement of the drag effect might be seen in the fractional quantum Hall regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.