Abstract

A microscopic approach to the theory of small, current-biased tunnel junctions is developed. This approach yields a natural account of the “secondary” quantization of both the single-electron (quasiparticle) and Cooper-pair (Josephson) current components. The theory shows that the current of the single electrons is blocked by their Coulomb interaction at low temperatures within a considerable range of the junction voltage. As a result of the blockade, coherent oscillations of the voltage can arise even in the absence of Josephson coupling, e.g., for single-electron tunneling (SET) between normal metal electrodes. The most significant features of these “SET” oscillations and their coexistence with Bloch oscillations in Josephson junctions are studied in detail. Prospects of experimental verification of the predicted effects and of their possible applications are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.