Abstract

We determine the low temperature shape of the Coulomb-blockade staircase in a superconducting double-island device. For an odd number of electrons, in the ground state the intrinsic quasiparticle is bound to the tunneling contact. For a single channel contact the gap between the ground state and the continuum of excited states is of the order of the Josephson energy E(J). The temperature dependence of the Coulomb-blockade step width is nonmonotonic, with the minimal width occurring at T(i) approximately E(J)/ln(square root DeltaE(J)/delta), where Delta and delta are, respectively, the superconducting gap and mean level spacing in the island. For an even number of electrons, the Coulomb enhancement of the Josephson energy is shown to be significantly stronger than that for a single grain coupled to a lead. If the electrostatic energy favors a single broken Cooper pair, the resulting quasiparticles are bound to the contact at T=0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.