Abstract

We present the study of the quantum tunneling through a vertical two-barrier structure sandwiching a graphene nanoribbon quantum object. Scanning tunneling microscopy measurements of the graphene nanoribbon show staircase I-U characteristics and oscillating dI/dU spectra. To identify the physical origin of the observed effect, we varied the tunneling resistance of the tip-ribbon junction and found a tip-to-ribbon distance dependent oscillating period change. Together with the numerical analysis, we confirm that the resonances in the spectroscopy arise from the Coulomb blockade effect. The study of the Coulomb blockade effect in graphene nanoribbons may be of potential usages for the fabrication of superthin quantum dot devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call