Abstract

We study numerically the effect of mode mixing and direct dipole-dipole interactions between gain molecules on spasing in a small composite nanoparticles with a metallic core and a dye-doped dielectric shell. By combining Maxwell-Bloch equations with Green's function formalism, we calculate lasing frequency and threshold population inversion for various gain densities in the shell. We find that gain coupling to nonresonant plasmon modes has a negligible effect on spasing threshold. In contrast, the direct dipole-dipole coupling, by causing random shifts of gain molecules' excitation frequencies, hinders reaching the spasing threshold in small systems. We identify a region of parameter space in which spasing can occur considering these effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.