Abstract

AbstractThick and highly viscous roots are the key to cratonic survival. Nevertheless, cratonic roots can be destroyed under certain geological scenarios. Eruption of mantle plumes underneath cratons can reduce root viscosity and thus make them more prone to deformation by mantle convection. It has been proposed that the Indian craton could have been thinned due to eruption of the Réunion plume underneath it at ca. 65 Ma. In this study, we constructed spherical time-dependent forward mantle convection models to investigate whether the Réunion plume eruption could have reduced the Indian craton thickness. Along with testing the effect of different strengths of craton and its surrounding asthenosphere, we examined the effect of temperature-dependent viscosity on craton deformation. Our results show that the plume-induced thermomechanical erosion could have reduced the Indian craton thickness by as much as ~130 km in the presence of temperature-dependent viscosity. We also find that the plume material could have lubricated the lithosphere-asthenosphere boundary region beneath the Indian plate. This could be a potential reason for acceleration of the Indian plate since 65 Ma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call