Abstract

This study aimed to evaluate the effect of different photobiomodulation (PBM) radiant exposures on the viability, proliferation, and gene expression of pulp fibroblasts from human primary teeth (HPF) involved in the pulp tissue repair. HPF were irradiated with Laser InGaAlP (Twin Flex Evolution, MMOptics®) at 660-nm wavelength (red); single time, continuous mode, 0.04-cm2 laser tip area, and 0.225-cm laser tip diameter, keeping the distance of 1 mm between the laser beam and the cell culture. The doses used were between 1.2 and 6.2 J/cm2 and were evaluated at the 6 h, 12 h, and 24 h after PBM. MTT and crystal violet assays evaluated the cell viability and proliferation. RT-PCR verified VEGF and FGF-2 mRNA expression. A blinded examiner analyzed the data through two-way ANOVA followed by Tukey test (p < 0.05). The groups with higher powers (10 mW, 15 mW, 20 mW, and 25 mW), shortest application periods (10 s), and radiant exposures between 2.5 and 6.2 J/cm2 exhibited statistically higher viability than that of the groups with small power (5 mW), longer application period (50 s), and radiant exposure of 6.2 J/cm2 (p < 0.05). VEGF and FGF-2 mRNA expression were observed at the three evaluated periods (6 h, 12 h, and 24 h) and the highest expression was in the shortest period (p < 0.05). All radiant exposures maintained HPF viable. The period of 6 h after irradiation showed statistically greater gene expression for both growth factors than other periods. VEGF mRNA had no differences among the dosimetries studied. The best radiant exposures for FGF-2 gene expression were 2.5 J/cm2 and 3.7 J/cm2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.