Abstract

The standard model for Type II supernovae explosion, confirmed by the detection of the neutrinos emitted during the supernova explosion, predicts the formation of a compact object, usually assumed to be a neutron star. However, the lack of the detection of a neutron star or pulsar formed in the SN 1987A still remains an unsolved mystery. In this paper we suggest that the newly formed neutron star at the center of SN1987A may undergo a phase transition after the neutrino trapping time scale (~10 s). Consequently the compact remnant of SN 1987A may be a strange quark star, which has a softer equation of state than that of neutron star matter. Such a phase transition can induce the stellar collapse and result in a large amplitude stellar oscillations. We use a three dimensional Newtonian hydrodynamic code to study the time evolution of the temperature and density at the neutrinosphere. Extremely intense pulsating neutrino fluxes, with submillisecond period and with neutrino energy (> 30 MeV) can be emitted because the oscillations of the temperature and density are out of phase almost 180 degree. If this is true we predict that the current X-ray emission from the compact remnant of SN 1987A will be lower than 10^34 erg s-1, and it should be a thermal bremsstrahlung spectrum for a bare strange star with surface temperature of around ~10^7 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call