Abstract

Textual data is available to an increasing extent through different media (social networks, companies data, data catalogues, etc.). New information extraction methods are needed since these new resources are highly heterogeneous. In this article, we propose a text matching process based on spatial features and assessed through heterogeneous textual data. Besides being compatible with heterogeneous data, it comprises two contributions: first, spatial information is extracted for comparison purposes and subsequently stored in a dedicated spatial textual representation (STR); and then two transformations are applied on STR to improve the spatial similarity estimation. This article outlines the proposed approach with new contributions: (i) a new geocoding methods using general co-occurrences between entities, and (ii) a thorough evaluation followed by (iii) an in-depth discussion. The results obtained on two corpora demonstrate that good spatial matches (≈ 80% precision on major criteria) can be obtained between the most similar STRs with further enhancement achieved via STR transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.