Abstract

Permanganate (MnO4−), an oxidant that has been applied in water treatment, has highly varied reactivity toward pollutants. In this study, we found manganate (MnO42−) could destruct diverse functional groups, with oxidation rates being higher than that of permanganate under acidic and neutral conditions. Mechanistic study revealed manganate rapidly disproportionated to permanganate and colloidal MnO2 in solution. Under acidic conditions, the in-situ formed colloidal MnO2 possess higher reactivity than permanganate and primarily contributed to the degradation of pollutants. The reactivity of in-situ formed colloidal MnO2 is highly sensitive to pH and decreased dramatically with increasing pH. Consequently, the contribution of MnO2 to pollutant removal decreased with elevating pH, which also leads to the decreased degradation efficiency of micropollutants at high pH. Manganate is an intermediate produced during the manufacturing process of permanganate. This study indicates that manganate might be an alternative of permanganate for water purification under acidic and neutral conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.