Abstract

The characterization of oxidized oxygen states through high-efficiency mapping of resonant inelastic X-ray scattering (mRIXS) has become a crucial approach for studying the oxygen redox activities in high-energy battery cathodes. However, this approach has been recently challenged due to the concern of irradiation damage. Here we revisited a typical Li-rich electrode, Li1.144Ni0.136Mn0.544Co0.136O2, in both lithiated and delithiated states and evaluated the X-ray irradiation effect in the lengthy mRIXS experiments. Our results show that irradiation cannot introduce any oxidized oxygen feature, and the features of oxidized oxygen are weakened with a high X-ray dose. The results confirm again that mRIXS detects the intrinsic oxidized oxygen state in battery electrodes. However, the distinct irradiation effects in different systems imply that irradiation could selectively target the least stable elemental or chemical states, which should be analyzed with caution in the study of active chemical states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.