Abstract
Integrating microalgae culture and wastewater purification is a promising technology for sustainable bioresource production. However, the challenge is that toxins in wastewater usually limit risk elimination and cause poor bioresource production. Easy-to-biodegrade substrates could alleviate the resistant stress on a bacterial community but we know little about how they function with microalgae. In this study, we tested if Easy-to-biodegrade substrates could simultaneously promote Chlorella to degrade antibiotic amoxicillin (AMO) and produce bioresources. Sodium acetate (NaAC) was used as the representative co-substrate. The results showed NaAC could enhance AMO removal by 76%. The β-lactam structure was destroyed and detoxified to small molecules, due to the up-regulation of hydrolase, oxidoreductase, reductase, and transferase. Chlorella biomass production increased by 36%. The genes encoding the glutathione metabolism and peroxisome pathways were significantly up-regulated to alleviate the antibiotic stress, and the DNA replication pathway was activated. As a result, the production of lipid, carbohydrate, and protein was enhanced by 61%, 122%, and 34%, respectively. This study provides new insights for using microalgae to recover bioresources from toxic wastewater and reveals the critical underlying mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.