Abstract

Background: Advanced glycation end-products (AGEs) and their cell receptor (RAGE) are involved in the pathophysiology of cardio-metabolic diseases. Interaction of AGEs with RAGE results in increased generation of oxygen radicals and pro-inflammatory cytokines. Circulating soluble RAGE (sRAGE) interacts with AGEs in order to counterbalance the negative effects of AGEs-RAGE interaction.Objectives: To define factors influencing AGEs, sRAGE, AGEs/sRAGE-ratio, and advanced oxidation-protein products (AOPPs) levels and to investigate changes in oxidative balance among overweight/obese children.Materials and methods: Cross-sectional, one Center, case-control study included 41 overweight and obese children aged between 5 and 16 years and 36 lean matched controls. Inclusion criteria were: BMI ≥ 1 SD; term birth; no genetic or endocrine causes of obesity; no associated chronic diseases neither chronic therapies. All patients underwent clinical and biochemical investigations (lipid and glucose profiles, liver, renal and thyroid function tests, uric acid, C-reactive protein (CRP), AGEs, sRAGE, and AOPPs serum concentrations). Significance was established at 0.050.Results: AOPPs, AGEs/sRAGE-ratio, HOMA-IR, triglycerides, triglycerides/HDL-ratio, total cholesterol (TC)/HDL-ratio, atherogenic-index of plasma (AIP), uric acid, CRP were significantly higher, whereas sRAGE and HDL were significantly lower in overweight/obese children than controls. sRAGE was significantly negatively correlated with BMI SD, TC/HDL-ratio, CRP, AOPPs, and positively with HDL. AGE/sRAGE-ratio and AOPPs were significantly positively correlated with BMI SD, TC/HDL-ratio, AIP, CRP, and negatively with HDL. BMI SD was independently associated with AGEs/sRAGE-ratio (B = 0.06; p = 0.008), AOPPs (B = 0.13; p = 0.02), and sRAGE (B = −73.18; p = 0.000).Conclusions: We demonstrated, for the first time in a pediatric cohort, a significant higher value of AGEs/sRAGE-ratio among overweight/obese children, expression of a relative shift to oxidant from anti-oxidant factors, suggesting an AGE/RAGE-related oxidative homeostasis dysregulation that could enhance susceptibility to oxidative/inflammatory tissues damage. Severity of overweight, influencing the increase of oxidative stress in human organism and even in children, may contribute to the pathogenesis of long-term cardiovascular and metabolic alterations.

Highlights

  • Childhood obesity and its correlated comorbidities, such as insulin-resistance (IR), fatty liver, type 2 diabetes, metabolic syndrome, are among the most important health issues worldwide [1, 2]

  • The oxidative stress pathways related to advanced glycation end-products (AGEs) generation were well-studied in adults and they were implicated in inflammation, endothelial dysfunction, IR, glucose homeostasis alterations and metabolic syndrome [5,6,7]

  • Circulating soluble RAGE is able to interact with AGEs, in order to counterbalance the negative effects of AGEs-RAGE interaction [7]

Read more

Summary

Introduction

Childhood obesity and its correlated comorbidities, such as insulin-resistance (IR), fatty liver, type 2 diabetes, metabolic syndrome, are among the most important health issues worldwide [1, 2]. The pathogenesis of adiposity-related cardiovascular and metabolic precocious alterations is the result of concurrent pathways of inflammation, apoptosis, and oxidative stress [3, 4]. The oxidative stress pathways related to advanced glycation end-products (AGEs) generation were well-studied in adults and they were implicated in inflammation, endothelial dysfunction, IR, glucose homeostasis alterations and metabolic syndrome [5,6,7]. AGEs and their transmembrane cell receptor (RAGE) have been involved in the pathophysiology of cardiovascular and metabolic diseases [7]. Interaction of AGEs with RAGE results in both increased generation of oxygen radicals and increased expressions of proinflammatory cytokines [7]. Advanced glycation end-products (AGEs) and their cell receptor (RAGE) are involved in the pathophysiology of cardio-metabolic diseases. Interaction of AGEs with RAGE results in increased generation of oxygen radicals and pro-inflammatory cytokines. Circulating soluble RAGE (sRAGE) interacts with AGEs in order to counterbalance the negative effects of AGEs-RAGE interaction

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.