Abstract

Could today's technology suffice for engineering advanced-fuel, magnetic-fusion power plants, thus making fusion development primarily a physics problem? Such a path would almost certainly cost far less than the present D-T development program, which is driven by daunting engineering challenges as well as physics questions. Advanced fusion fuels, in contrast to D-T fuel, produce a smaller fraction of the fusion power as neutrons but have lower fusion reactivity, leading to a trade-off between engineering and physics. This paper examines the critical fusion engineering issues and related technologies with an eye to their application in tokamak and alternate-concept D-3He power plants. These issues include plasma power balance, magnets, surface heat flux, input power, fuel source, radiation damage, radioactive waste disposal, and nuclear proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.