Abstract

This paper presents molecular dynamics simulations of the Couette flow of a rarefied gas between the liquid and wall boundaries and, in particular, investigates the boundary conditions for the Boltzmann equation at the liquid interface. The simulation results for various Knudsen numbers show that the slip velocity decreases at the liquid boundary and increases at the smooth wall as the Knudsen number increases, indicating that the velocity profile of the rarefied Couette flow is asymmetric. One reason for this is backscattering, in which molecules are reflected in the opposite direction to the mainstream flow, owing to molecular-scale roughness at the liquid boundary. It has also been suggested that the backscattering effect decreases when the gas density increases. This can be understood using the local Knudsen numbers near the liquid boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call