Abstract
We present an experimental and theoretical study of a magnetic single-molecule transistor based on N@C60 connected to gold electrodes. Particular attention is paid to the regime of intermediate molecule-lead coupling, where cotunneling effects manifest themselves in the Coulomb-blockade regime. The experimental results for the differential conductance as a function of bias, gate voltage, and external magnetic field are in agreement with our analysis of the tunneling rates and provide evidence of magnetic signatures in single-N@C60 devices arising from an antiferromagnetic exchange interaction between the C60 spin and the nitrogen spin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.